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Classical dynamical simulation of spontaneous alloying
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Abstract. “Spontaneous alloying” observed by Yasuda, Mori et al. for metallic small clusters is simulated
using classical Hamiltonian dynamics. Very rapid alloying occurs homogeneously and cooperatively start-
ing from the solid phase of the cluster if the heat of solution is negative and the size of cluster is less
than a critical size. Analysis of 2D models reveals that the alloying rate obeys an Arrhenius-type law,
which predicts the alloying time much less than second at room temperature. Evidences manifesting that
the spontaneous alloying proceeds in the solid phase without melting are also presented. The simulation
reproduces the essential features of the experiments.

PACS. 31.15.Qg Molecular dynamics and other numerical methods – 36.40.Sx Diffusion and dynamics
of clusters

1 Introduction

An important feature of small clusters of atoms is that a
relatively large fraction of atoms are on the surface and are
easily deformable in relative positions. Small clusters thus
suffer from anomalously large dynamical fluctuations. In-
deed, several experimentalists observed that small metal-
lic clusters undergo dynamical transitions among vari-
ous shapes [1]. Coexistence of various quasi-equilibrium
shapes implies that the phase space of small clusters is
densely populated by local minima of potential energy
with similar depth [2]. The structural fluctuation men-
tioned above has been interpreted as itinerancy among
different local minima which is induced by deterministic
chaotic motion going across the transition states [3]. Such
chaotic itinerancy has been observed in a wide class of
physical and biological systems [4]. Anomalous fluctua-
tion inherent in clusters is a significant subject of few-
body dynamics and nonlinear dynamics, which is beyond
the traditional approach of statistical physics.

Recently Yasuda, Mori et al. have observed a very
rapid alloying behavior in nanometer-sized metallic clus-
ters such as Au–Cu system by in situ experiment with
transmission electron spectroscopy [5]. Such a rapid al-
loying phenomenon seems to be a manifestation of the
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dynamical activity inherent in cluster systems. The main
results of their extensive studies for various combinations
of metallic species may be summarized as follows.

(a) The solute atoms deposited onto the host cluster dis-
solute into the host cluster at an anomalously rapid
rate even at room temperature. Such a rapid alloying
phenomenon is controlled by the heat of solution of
the solute atom to the host metal: the rapid alloying
occurs for a wide class of combinations of metals with
negative heat of solution [6].

(b) Homogeneous dissolution of the solute atom into the
host cluster occurs when the size of the cluster is less
than a critical size. In clusters of size larger than the
critical size, rapid alloying takes place only in shells
around the surface of the cluster and a core occupied
by the host metal is retained [7]. The critical size in-
creases with the magnitude of the negative heat of so-
lution [6].

Therefore, the spontaneous alloying seems to be a uni-
versal phenomenon which is observed in general for arbi-
trary combinations of metallic species with negative heat
of solution.

Further by the observation that doubly twined clusters
remain unchanged before and after the rapid alloying, they
concluded that [8]

(c) the rapid alloying proceeds without melting in the
sense that the global crystalline structure is not
changed throughout the alloying process.
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The time scale of alloying is less than 1–10 s, which
implies the diffusion rate is 109−10 times larger than that
of the corresponding bulk system. These distinct features
strongly suggest the presence of some new mechanisms of
mixing in the metallic clusters.

The present article reports the first attempt to in-
vestigate whether such a rapid alloying phenomenon can
be described by classical dynamical simulations assuming
quite simple interaction potentials among metal atoms.
We stress that we make our model as simple as possible,
since rapid alloying seems to be a universal phenomenon
controlled by the heat of solution and does not depend
upon the detailed features of the metallic species.

2 Model potentials

In the present analysis we do not consider the explicit
change of the electronic structure behind the formation
of metallic bonding. We suppose that all the features of
metallic bondings can be described by certain classes of
model potentials. There have been proposed several semi-
empirical model potentials which may reproduce the main
properties of bulk metals. A typical example is one de-
rived from the so-called embedded atom method (EAM)
[9]. It is a many-body potential, which includes the effect
of the electronic structure in the metals. Indeed it suc-
ceeded in reproducing a number of equilibrium properties
of bulk metals. However, it is not assured that the EAM
works well in the description of the dynamics of alloying
small clusters, where the fluctuation of interatomic dis-
tances is much more enhanced than in the bulk metals. In
particular, a serious defect of the EAM from the viewpoint
of the numerical simulation is that it contains many pa-
rameters to be fitted, which makes it hard to control the
heat of solution to give a desired value. As summarized in
(a) and (b) in the previous section, the heat of solution
plays the key role in the spontaneous alloying process ob-
served by Yasuda et al. In fact the spontaneous alloying
is a quite universal phenomenon which is supposed to be
controlled dominantly by the heat of solution. It seems to
be unlikely that such a phenomenon sensitively depends
upon the details of the model potential. We thus choose
a model potential with which the heat of solution can
be easily controlled rather than a model potential faith-
fully reproducing the equilibrium properties of the corre-
sponding bulk metals. The model potentials we use here is
the Lennard-Jones (LJ) potential and the Morse potential
which are both typical examples of two-body potentials.
The LJ potential and the Morse potential contain only a
few parameters, and can be written as,

Vss′(r) = εss′
{(rss′

r

)12
− 2
(rss′
r

)6}
(LJ) (1)

Vss′(r) = εss′
{
e−2ass′(r−rss′) − 2e−ass′(r−rss′)

}
(Morse)

(2)

where ss′ specifies the species of the two interacting atoms,
say A and B. To extract the role of the heat of solution

we consider the following simplified situation: we sup-
pose that the bond length rss′ , and the decay rate of
potential ass′ are the same for two species, i.e., rAA =
rBB = rAB , aAA = aBB = aAB. We further suppose
εAA = εBB ≡ ε, then the only free parameters of the
model potentials are α = εAB/εAA in the LJ potential,
and α and ρ = ass′rss′ in the Morse potential. The heat
of solution per atom necessary for the formation of dilute
alloy is then controlled by the single parameter α

∆H = z(1− α)ε, (3)

where z is the number of nearest neighbor atoms. In
the realistic situation, the radius of the atoms are, of
course, slightly different. Our assumption rAA = rBB =
rAB, aAA = aBB = aAB is not correct, but the results of
simulation indicate that such a difference does not result
in noticeable effects, and we are allowed to take such a
simplification.

We note that the two-body potential, however, does
not explicitly take into account the bond-weakening effect,
which may be a crucial in the alloying process. Let us con-
sider a pair of bonded atoms. If a third atom comes close
to them and attracts electrons from the pairing bond, then
the bond may be weakened and it may become easier for
one of the paired atoms to change its partner to the third
atom. The above mechanism is a typical example of many-
body effect which can not be taken into account by the
two-body force. A simple model potential which empha-
sizes such effects of electron transfer among atoms and of
the change of electronic features of bonding has also been
proposed based upon Pettifor’s theory of metallic bonding
and will be presented in a forthcoming publication [10].

3 Preparation of initial conditions
and evolution rules

The deposition of solute atoms on the cluster and the sub-
sequent formation of bonding with the host atom generate
the heat of condensation ε per bond. The released energy
significantly raises the temperature of the cluster, but the
excess heat in the cluster relaxes to the substrate on a
time scale much shorter (10−6∼−4 s) than the time inter-
val of deposition (∼ 10−1 s) [11]. Thus the atoms landing
successively on the host cluster are accumulated and con-
densed. When the number of solute atoms condensed on
the host cluster exceeds a certain amount, a rapid disso-
lution of solute atoms in the host cluster will take place.
Such a scenario is supported by the experimental obser-
vation that Au-cluster closely adhered to a Sb-cluster also
exhibits spontaneous alloying [12]. From these considera-
tions, we prepare the initial condition in the following two
steps.

(1) First, a cluster of a single species, say A, with a closed
shell structure i.e., hexagonal cluster of triagonal lat-
tice (2D) or cuboctahedral cluster of fcc lattice (3D),
or with a nearly closed-shell structure is prepared.
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Fig. 1. Two typical initial spatial distributions of atoms used
in our simulation. Open circles and filled circles indicate A-
and B-atoms, respectively.

It is evolved with appropriate initial velocities until
the excess potential energy is converted to the kinetic
energy and the system reaches a quasi-equilibrium
state.

(2) Then all atoms contained in a part of the cluster, or
an appreciable number of atoms in outer shells of the
cluster, are replaced by B-atoms.
The simulation starts with the same positions and mo-
menta just before the replacement by B-atoms. We
show in Figure 1 two different class of typical spatial
configurations of initial conditions that we prepared.

With these initial conditions, we evolve the system
by Hamilton’s equation of motion using potentials (1, 2).
Both 2D- and 3D-simulations were performed. In this ar-
ticle we confine ourselves to the 2D simulations, because
the mixing process can easily be traced in 2D clusters,
and moreover significant qualitative differences between
2D and 3D simulations has not been recognized yet.

As discussed above, the time scale on which the excess
heat generated in the cluster relaxes toward the substrate
is short compared to deposition, but rather (10−6∼−4 s)
long compared to the time scale of alloying. This is at-
tributed to the the fact that the coupling between the
cluster and the substrate due to the Van der Waals force is
much weaker than the metallic bonding. We first suppose
that the major process of alloying completes within the
time scale of heat relaxation. Accordingly time evolution
of the system obeys the Hamilton’s equation of motion

Ms
dqsi`

dt
= psi`,

dpsi`

dt
= −

∑
is,js′

∂Vss′(risjs′ )

∂qsi`
, (4)

where psi, qsi are the momentum and the coordinate of the
`(= x, y, z)th component of the ith atom of the species s
(= A or B) with mass Ms. This simulation may be called
“microcanonical” or “isoenergetic” simulation in which
the total energy of the atoms is conserved.

Another extreme limit is that in which the isother-
malization by the substrate is significant. For the isother-
mal condition it is reasonable to employ the evolution rule
based on the Langevin equation, where the second equa-

Fig. 2. Caloric curves (total energy versus kinetic energy) for
typical Morse clusters: N = 37, N = 67, N = 80 and N = 117.
The melting temperatures are decided by the hysteretic part
indicated by the arrows.

tion of equation (4) is replaced by

dpsi`

dt
= −γpsi` −

∑
is,js′

∂Vss′(risjs′ )

∂qsi`
+ fsi`, (5)

which contains the friction force −γpsi` and the random
force fsi`, which is δ-correlated, i.e., 〈fsi`(t)fsi`(t′)〉 =
kBTγδ(t − t′), where T is the temperature. With this
model, we can examine the effect of the isothermalization
on the spontaneous alloying. The majority of the results
shown in the next section is devoted to the isoenergetic
simulation. In the last section we compare them with the
results of the isothermal simulation.

4 Results

4.1 Case of α = 1

We first discuss the case of α = 1. In this case the cluster
is effectively composed of a single species. As a result the
rapid dissolution of B in A-cluster occurs only above the
melting temperature TM . Since the melting temperature
is a quite important parameter in what follows, we discuss
it rather in detail.

In the isoenergetic simulation we define the tem-
perature T as the local time average of the total ki-
netic energy (Ekin) of the cluster with NDkBT/2 =∫ t+∆t
t

Ekin(t′)dt′/∆t, where ∆t is an averaging time taken
much longer than the Debye period tD (typically ∆t ∼
103tD), D is the spatial dimension, and N is the number
of atoms contained in the cluster. In small clusters melting
does not occur homogeneously: the melting takes place on
the surface at lower temperature and it proceeds in the
inner shells as the temperature T rises.
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Fig. 3. (a) Time evolutions of the bond number b(t)
(solid line) and the kinetic energy Ekin per atom (dot-
ted line) in the rapid alloying process of a 2D LJ clus-
ter ((NA, NB) = (28, 9), α = 1.2), and (b) represen-
tative spatial distributions of A- and B-atoms in the
four stages 1©– 4© discussed in the text. The times of
the four patterns are indicated in (a).

Hereafter we define the melting temperature TM as the
temperature above which even the core part of the cluster
melts. In practice, TM is estimated by the caloric curve,
i.e., the relation between T and the total energy U , which
is known to exhibit a hysteretic behavior close to TM [2].
We show in Figure 2 typical examples of caloric curves for
different sized 2D Morse clusters.

Above TM the mixing among the two species occurs
very rapidly, but the B-atoms which go into the inner
shells occupied by the A-atoms often come back again
to the surface, demonstrating that such a process is not a
unidirectional alloying process but a bidirectional diffusion
process. At well below TM , the diffusion into the inner
shells part is inhibited, and complete mixing between the
two species can no longer be observed within the time
scale accessible by computer simulation. But it should be
emphasized that the surface melts even well below TM
in the sense that the atoms on the outer layer can diffuse
along the surface. It is well-known that TM decreases with
the size of the cluster [13]. For typical clusters with the
number of shells m ∼ 4−6 (30 < N = NA + NB <
120) the melting temperature is estimated as kBTM/Uc ∼
0.050−0.070 and ∼ 0.045−0.070 for typical 2D LJ and
Morse clusters, respectively, where Uc = zε/2 is the heat
of condensation per atom.

Before closing this section, we stress again that even
at temperatures lower than TM the atoms on the surface
of the cluster can diffuse along the surface.

4.2 Case of α < 1

For two component clusters with positive heat of solution
where α < 1, the mixing between the two species is not
observed, even if the initial temperature T0 is far above the
melting temperature TM . For T0 > TM the atoms rapidly
exchange the positions with atoms of the same species,

but the two species are separated with an interface, and
do not mix with each other at all. That is, we cannot find
any symptoms revealing onset of alloying in the cluster for
T0 < TM in our simulation.

4.3 Case of α > 1

In this part we discuss the most interesting case where the
heat of solution is negative i.e., α > 1. It takes extremely
long CPU time to simulate with conditions corresponding
to the actual experimental situations of the spontaneous
alloying. To make the computation time short enough to
be accessed by available computational resource, simula-
tions are executed for heat of solution larger (|α| = 1.2)
than that of real systems (|α| = 1.02 (Au−Cu)−1.07 (Au–
Al)) and for initial temperature T0 > 2TM/3, which is
higher than in actual experiments (i.e., T0 ∼ 300 K ∼
TM/3). If the initial temperature T0 is higher than the
melting temperature TM , the solute B-atoms condensed
on the host A-cluster always dissolve into an alloyed clus-
ter. The alloying rate is, however, significantly larger than
the diffusion rate in case of the single component i.e.,
α = 1. The time scale of dissolution increases rapidly with
decrease in T0, but even for the initial temperature below
TM the alloying behavior can surely be observed.

To quantify the time evolution of the alloying process,
we introduce the bond number b(t) as the average num-
ber of nearest neighbor host (A) atoms to the solute (B)
atoms.

b(t) =
∑

i∈{B−atoms}

NA(i)(t)

NB
(6)

where NA(i)(t) is the number of nearest neighbor A-atoms
around the ith B-atom at time t, and NB is the total
number of B-atoms.
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(a) (i) (ii) (iii) (iv)

(b) (i) (ii) (iii) (iv)

Fig. 4. The trajectories of position coordinates of all B-atoms in 2D Morse clusters: (a) m = 5 and r increases as (i) r =
0.09 , (NA, NB) = (61, 6), (ii) r = 0.18 , (NA, NB) = (55, 12) and (iii) r = 0.3, (NA, NB) = (47, 20); (b) r = 0.3, and the cluster
size increases as (i) m = 4 (NA, NB) = (23, 9), (ii) m = 6 (NA, NB) = (56, 24) and (iii) m = 7 (NA, NB) = (84, 33). See the
text.

Figure 3a shows a typical example of the time evolu-
tion of b(t) together with the kinetic energyEkin per atom,
which are obtained for a 2D LJ cluster starting from the
initial configuration of Figure 1b. The spatial configura-
tions of the two species are also displayed in (b). The bond
number b(t) increases monotonically with the value of the
bond number for homogeneous mixing bh = z(1−r). This
directional relaxation of b(t) is quite different from the
diffusive relaxation process observed in the α = 1 cluster,
where b(t) fluctuates and a monotonic increase is not ob-
served. The whole process consists of the following stages:
1© the surface diffusion is initiated, 2© the clustered B-
atoms collapse and surround the A-host, 3© the B-atoms
enter into the host cluster being enclosed by the A-atoms,
and 4© the B-atoms are mixed strongly with the A-atoms
and the alloying completes.

As shown in Figure 3a the kinetic energy increases in
the stage 3© and saturates at the level of TM in 4©. In
the stage 4© some atoms dissociate from the cluster (very
often from the 2D LJ cluster, but not very often from the
3D LJ and the 2, 3D Morse cluster). Then, as indicated
by an arrow, the kinetic energy suddenly decreases and
the cluster cools down.

Such a rapid and homogeneous alloying can not oc-
cur if the relative ratio r of the number of B-atoms to the
total number of atoms in the cluster is not very large. Fig-
ure 4a shows the trajectories of the position coordinates of
B-atoms starting from the initial configuration shown in
Figure 1a on the same time scale numerically accessible,
i.e., t ∼ 105tD. The Morse potential (α = 1.2, ρ = 3.68)
is used, and the initial temperature T0 is fixed to the
same temperature kBT0/Uc = 0.051 slightly lower than
kBTM (∼ 0.060Uc). The number of shells of the cluster
is taken as m = 5, and the total number of atoms is

N = NA + NB = 67. The ratio r is increased in the or-
der of (i) 0.09, (ii) 0.18 and (iii) 0.30 in Figure 4a, and
(iv) shows a typical spatial distribution of (iii) in the final
stage. It is evident that as the ratio increases, the maximal
depth which B-atoms can finally reach increases, and in
(iii) some B-atoms can reach in the center of the cluster.
This fact implies that cooperative action among the solute
atoms is crucial for homogeneous alloying to take place.

On the other hand, as the size of cluster increases, the
homogeneous alloying becomes suppressed. We show in
Figure 4b how the process of mixing into the inner shells
changes as the cluster size is increased. Morse clusters
starting from the same initial temperature as in Figure 4a
are examined. In (i), (ii) and (iii), the ratio r is fixed to
the same value as Figure 4a (iii), (where m = 5) and m is
increased as m = 4, 6 and 7, respectively. A typical spatial
distribution of (iii) in the final stage is depicted in (iv). It
is evident that the mixing is homogeneous if m ≤ 5, but
as m is increased further, the alloyed region is localized
closer to the surface. If m is larger than 7, the B-atoms
can no longer enter into the inner shells. These results
show that the homogeneous alloying in the smaller sized
clusters (m ≤ 5) occurs much more rapidly than in the
corresponding bulk. Numerically, we confirmed that the
critical shell number of the rapid homogeneous alloying
increases if the the parameter α, which controls the heat
of solution, is increased. It should be noted, however, that
the stages 1© and 2©, which initiate the following rapid
alloying process, are due to the easiness of atomic mo-
tion close to the surface. Therefore, roughly speaking, the
rapid alloying occurs in such a cluster when the number of
surface atoms overwhelms the number of the remainder,
i.e., in clusters of m ≤ 4−6 for 2D and of m ≤ 10−12
for 3D.
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Fig. 5. Dependence of the alloying time talloy on the initial
temperature T0 for a typical 2D LJ-cluster ((NA, NB) = (28, 9)
and initial condition Fig. 1a); (+): isoenergetic (microcanoni-
cal) simulation, (∗): isothermal (Langevin) simulation for the
cluster of α = 1.2, and (2): isoenergetic simulation for the
cluster of α = 1.

Finally we estimate the time scale of such a “rapid”
alloying at room temperature. As stated above, our simu-
lation is done at initial temperature (T0 > 2/3TM) higher
than room temperature (T0 ∼ TM/3), and as shown in
Figure 5, the alloying times obtained for a typical 2D LJ
cluster (NA = 28, NB = 9 and the initial condition of
Fig. 1a) obeys an Arrhenius-like law in such a temper-
ature regime. In fact, the semi-log plot of the alloying
time talloy, which is defined as the time when b(t) reaches
(b(0)+ bh)/2, versus the inverse of the initial temperature
T0 is a straight line, which yields the empirical rule

talloy ∼ atDe
Ealloy/T0kB , (7)

where the activation energy Ealloy/Uc and the constant
a are fitted to 0.615 and 2.0 × 10−4, respectively. Ex-
trapolating the rule to room temperature, we can esti-
mate the alloying time, for example, talloy ∼ 109tD and
talloy ∼ 1012tD at T0 ∼ 300 K for ε = 0.40 eV (which gives
TM = 930 K) and ε = 0.5 eV (TM = 1160 K), respectively.
This implies talloy ∼ 10−4−10−1 s for tD ∼ 10−13 s, which
is a reasonable time scale consistent with experiment. Sim-
ilar behavior has been observed also for the Morse cluster,
but the activation energy Ealloy is significantly smaller
than for the LJ cluster. For comparison, we have shown
the plots of talloy versus T0 in the case of α = 1. These
plots are also straight lines. However, the slope of the plots
is much larger than in the case of α = 1.2: Ealloy/Uc and
the constant a are estimated to be 1.42 and 2.8 × 10−9,

respectively. The present estimation yields an extremely
long time scale talloy ∼ 107−1014 s at room temperature.

The 2D-EAP cluster and the 3D-Morse cluster also
exhibit similar rapid alloying processes, which will be pre-
sented in detail elsewhere [14].

5 Discussion

The results mentioned above agree quite well with the
experimental results summarized as (a) and (b) in Sec-
tion 1. However, the presence of the final stage 4© in the
LJ cluster seems to be somehow inconsistent with the
experimental conjecture (c) that the whole of the alloy-
ing process proceeds without melting. In fact, the melt-
ing of the cluster is observed also in the Morse clusters
shown in Figure 4a and 4b. This is because our simula-
tion is microcanonical and the total energy is conserved,
which results in the heating up of the cluster due to the
emission of the reaction heat. The temperature reaches
the maximum value as the ideal mixing is achieved. The
maximal increment of temperature ∆T is estimated to be
∆T ∼ 2r(1−r)(α−1)Uc/kB in the large limit of the clus-
ter size. It is significant at the value α = 1.2 taken in the
simulations so far discussed, because the initial tempera-
ture was not set much lower than TM .

However, if we are allowed to take smaller values of
α, T0 and r, the temperature may be kept below TM
even if homogeneous mixing takes place. Such a simula-
tion takes a very long CPU time, and we have examined
only a few examples under such conditions, but we have
some evidence showing that the solute atoms dissolute
without the melting of the cluster. Figure 6a shows a typ-
ical example. In this example we used a Morse cluster of
N = 67 ((NA, NB) = (55, 12)) and α = 1.1 starting with
the initial condition of Figure 1b. The initial temperature
is chosen to be T0 = 0.042Uc/kB ∼ 0.71TM . It is clear
that an almost homogeneous alloying is achieved in the fi-
nal stage. The positions of individual atoms are exchanged
and so the crystal axis slightly rotates, but the hexagonal
structure of the cluster remains unchanged throughout the
whole process of the rapid alloying. Indeed, as shown in
(b) the rise of the temperature is small, and the tempera-
ture is kept well below TM . Moreover, the substrate, which
is not taken into account in our simulation, will absorb the
excess heat and enable rapid alloying without rise of tem-
perature.

On the other hand, isothermalization effect by the sub-
strate suppresses the rapid alloying process. To investigate
the effect of isothermalization due to the contact with the
substrate, we show in Figure 5 the plot of talloy versus T0

obtained by using the Langevin equation (5). The friction
constant γ was chosen to be much larger (typically to the
order of t−1

D ) than the actual value in order to empha-
size the effect of the isothermalization. It is evident that
the effective activation energy estimated by the slope of
the Arrhenius plot is significantly larger than the isoen-
ergetic simulation. It is estimated as Ealloy/Uc ∼ 0.82,
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(a)

(b)

Fig. 6. (a) Time evolution of the alloying process of the Morse cluster shown in Figure 4a, where t indicates time (ns), where
tD = 10−13 s, and (b) the evolution of the temperature T . The broken line is the melting temperature determined from the
caloric curve (Fig. 2).
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and a ∼ 4.0× 10−4. From an extrapolation to room tem-
perature of the Arrhenius plot one can evaluate the alloy-
ing time talloy ∼ 1− 104 s which is 104 times longer than
in the isoenergetic simulation. The above results imply
that too strong coupling with the heat reservoir severely
suppresses the rapid alloying process. The weakness of the
coupling with the substrate will be a necessary condition
for the occurrence of the rapid alloying.

Summarizing the above observations we can conclude
that rapid alloying certainly can occur without melting
of the cluster. The alloying rate will be maximal in the
isoenergetic condition. Even if coupling with the substrate
exists, rapid alloying can be achieved, provided that the
absorption of the excess heat by the substrate occurs
slowly enough. Further systematic investigations are now
in progress. The details will be presented in forthcoming
publications [14]. The most interesting theoretical prob-
lem unclarified yet is what kind of dynamical process is
responsible for the rapid alloying observed here.
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